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In this letter, the problem of forced convection heat transfer over a horizontal flat plate is investigated
by employing the Adomian Decomposition Method (ADM). The series solution of the nonlinear differ-
ential equations governing on the problem is developed. Comparison between results obtained and those
of numerical solution shows excellent agreement, illustrating the effectiveness of the method. The solu-
tion obtained by ADM gives an explicit expression of temperature distribution and velocity distribution
over a flat plate.
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1. Introduction

Most scientific problems such as heat transfer are inherently of nonlinearity. We
know that except a limited number of these problems, most of them do not have ana-
lytical solutions. Therefore, these nonlinear equations should be solved by using other
methods. Some of them are solved by using numerical techniques and some of them
are solved by using perturbation method. Since there are some limitations with the
common perturbation method, and also because the basis of the common perturbation
method is upon the existence of a small parameter, developing the method for differ-
ent applications is very difficult. Most boundary-layer models can be reduced to sys-
tems of nonlinear ordinary differential equations which are usually solved by numeri-
cal methods. It is however interesting to find solutions to boundary layer problems
using analytical approach. Analytical methods have significant advantages over nu-
merical methods in providing analytic, verifiable, rapidly convergent approximation.
The Adomian decomposition method based on series approximation is the newly de-
veloped method for strongly nonlinear problems. The Homotopy Perturbation Method
uses functions to obtain series solutions to boundary-layer equations [1–6] while the
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series in ADM [7] are derived from functions consisting of terms corresponding to the
initial conditions. The analytic ADM has been proven successful in solving a wide
class of nonlinear differential equations [7–13]. Hashim [8] applied ADM to the clas-
sical Blasius’ equation. Wazwaz [14] used ADM to solve the boundary layer equation
of viscous flow due to a moving sheet. Awang Kechil and Hashim [15] extended the
applicability of ADM to obtain approximate analytical solution of an unsteady bound-
ary layer problem over an impulsively stretching sheet. The first application of ADM
to a 2-by-2 system of nonlinear ordinary differential equations of free-convective
boundary layer equation was presented by Awang Kechil and Hashim [16]. Hayat et
al. [17] studied the MHD flow over a nonlinearly stretching sheet by employing the
Modified Adomian Decomposition Method.

In this paper, we revisit the steady two-dimensional laminar forced convection in
a flow of viscous fluid against a flat plate with uniform wall temperature. Fluid is as-
sumed to have constant properties. In this letter, we are interested in applying ADM to
obtain an approximate analytical solution of this problem and the results obtained will
be validated by those of numerical simulation.

2. Governing equations

Consider steady flow, with constant free stream velocity u∞ without turbulence
over a semi-infinite flat plate aligned with the flow. All fluid properties are considered
to be constant. The continuity, Navier–Stokes, and energy equations of this flow are as
follows [16]:
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with following boundary conditions:

T = 0 at y = 0, (4a)

T → T∞ when y → ∞, (4b)

T = T∞ at x = 0, (4c)
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u = 0,       v = 0 at y = 0, (4d)

u = u∞ at x = 0, (4e)

u → u∞ when y → ∞. (4f)

The solution to the momentum equation is decoupled from the energy solution.
However, the solution of the energy equation is still linked to the momentum solu-
tion. The following dimensionless variables are introduced in the transformation:
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The Reynolds number is defined as:
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Using Equations (1) through (6), the governing equations can be reduced to two
equations where f is a function of the similarity variable (η) [18]:
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where f  is related to the u velocity by [18]:
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The reference velocity is the free stream velocity of forced convection. The bound-
ary conditions are obtained from the similarity variables. For the forced convection
case [18]:

f (0) = 0,       f ′ (0) = 1,       θ′(0) = 1,       f ′(∞) = 1,       θ(∞) = 0, (10)
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3. Adomian decomposition method

We follow the standard procedure of ADM [7] by introducing two linear differential
operators L1 = d3/dη3 and L2 = d2/dη2 with inverse operators =⋅− )(1

1L ∫ ∫ ∫ ⋅
η η η

0 0 0
ddd)( ttt

and =⋅− )(1
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η η

0 0
.dd)( tt  Thus, Equation (8) in operator form,
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Applying the inverse operators on Equations (11) and (12) and let ,)0( 1α=′′f
,)0( 2αθ =′  we obtain,
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where the nonlinear terms in Equations (13) and (14),
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and their respective decompositions,
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Ai, Ei are so-called Adomian polynomials [7], given by
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This yields

,000 ffA ′′= (20)

,000 θ′= fE (21)

and for i ≥ 1
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In ADM [14], f and θ are defined as infinite series,

,)(
0
∑
∞

=

=
i

iff η (24)

.)(
0
∑
∞

=

=
i

i ηθθ (25)

Substituting Equations (17) and (18) and Equations (24) and (25) into Equations
(13) and (14), we obtain
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and the individual terms for f and θ are obtained from the recursive relations
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For practical numerical computation, we will compute the j-term approximation of
f (η), θ(η) which are φj(η) = ∑ −

=

1

0
,j

i if  ψj(η) = ∑ −

=

1

0
,j

i iθ  respectively, as the j-term ap-

proximations converge to the true series as j approaches infinity.

4. Results and discussion

The Adomian polynomials (20–23) and the recursive relations (28–31) are then coded
in the Maple environment computer package with the controlling significant digits set
to 11. We obtain 10-term approximation to both f and θ given by φ10(η) = ∑=

9
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and ψ10(η) =∑ =

9
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i iθ  respectively, but for lack of space, only the first 3 terms produced

from (28–31) are given below:
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The undetermined values of α1 and α2 are calculated from the boundary conditions
at infinity in (10). The difficulty at infinity is overcome by employing the diagonal
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Padé approximants [19] that approximate f ' (η) and θ(η) using φ10(η) and ψ '10(η),
respectively. The numerical results of α1 and α2 from 1lim 10 =′

→∞
φ

η
 and 0lim 10 =

∞→
ψ

η
 for

selected m in the range from 8 to 11 are presented in Table 1 for Pr = 1. Since Equa-
tion (8) can not be easily solved by the analytical method; Equation (8) is, therefore,
solved by the numerical method using the software MAPLE whose results are given in
Tables 2 and 3, and also the consequent results of the numerical and Adomian
Decomposition are compared in Figures 1, 2 and 3. As you can see in Pr = 1, the
ADM has a high accuracy.

Table 1. Numerical values of f ′′(0), θ′(0), for Pr = 1
[8.8] [9.9] [10.10] [11.11] Exact

α1 0.2683198 0.44927 0.3293037 0.3293037 0.3293037
α2 –0.2797056 –0.426513 –0.3487661 –0.3487661 –0.3487661

Table 2. The results of ADM, HPM and NM for f (η), f ′(η) if Pr = 1
f (η) f ′(η)

η ADM NM ADM NM
0 0 0 0 0

0.2 0.0065859 0.0066412 0.0658571 0.0664077
0.4 0.0263396 0.0266762 0.1316636 0.1327641
0.6 0.0592395 0.0597215 0.1972899 0.1989372
0.8 0.1052295 0.1061082 0.2625216 0.2647094
1 0.1642024 0.1655717 0.3270638 0.32978

1.2 0.2359847 0.2379487 0.3905487 0.3937761
1.4 0.3203229 0.3229819 0.4525474 0.4562617
1.6 0.4168731 0.4203207 0.5125869 0.5167567
1.8 0.525194 0.529518 0.5701715 0.5747581
2 0.6447451 0.6500243 0.6248074 0.6297657

2.2 0.7748894 0.7811933 0.6760307 0.6813103
2.4 0.9149026 0.9222901 0.7234349 0.7289819
2.6 1.0639869 1.0725059 0.7666961 0.772455
2.8 1.2212899 1.2309773 0.8055934 0.8115096
3 1.3859262 1.3968082 0.8400224 0.8460444

3.2 1.5570018 1.5690949 0.8699999 0.8760814
3.4 1.7336381 1.7469501 0.89565596 0.9017612
3.6 1.9149935 1.9295251 0.9172393 0.9233296
3.8 2.1002831 2.1160298 0.9350592 0.9411181
4 2.2887911 2.3057464 0.9494855 0.9555182

4.2 2.4798731 2.4980396 0.9608389 0.966957
4.4 2.6729204 2.6923609 0.969051 0.9758708
4.6 2.8671706 2.888248 0.9722134 0.9826835
4.8 3.0608776 3.0853206 0.9815741 0.9877895
5 3.2479336 3.2832736 0.9896845 0.9915419
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Fig. 1. The comparison of the answers resulted by ADM and NM for f (η)

Table 3. The results of ADM, HPM and NM for θ(η) if Pr = 1
η ADM NM η ADM NM
0 1 1 2.6 0.2333038 0.2275449

0.2 0.9341428 0.9335922 2.8 0.1944065 0.1884903
0.4 0.8683363 0.8672358 3 0.1599775 0.1439554
0.6 0.80271 0.8010627 3.2 0.13012 0.1239183
0.8 0.7374783 0.7352908 3.4 0.1043403 0.0882386
1 0.6729361 0.6702199 3.6 0.0827606 0.0666702

1.2 0.6094512 0.6062238 3.8 0.0649412 0.0588819
1.4 0.5474525 0.5437381 4 0.0505144 0.0314817
1.6 0.487413 0.4832432 4.2 0.03916103 0.0330429
1.8 0.4298284 0.4252418 4.4 0.0309489 0.0241292
2 0.3751925 0.3702342 4.6 0.0277865 0.0173165

2.2 0.3239692 0.3186896 4.8 0.0186443 0.0122105
2.4 0.276565 0.271018 5 0.01264024 0.0084581

Fig. 2. The comparison of the answers resulted by ADM and NM for θ(η)
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Fig. 3. The comparison of the answers resulted by ADM and NM for f ′(η)

5. Conclusions

In this letter, Adomian Decomposition Method has been successfully applied to
natural convection heat transfer problem with specified boundary conditions. The ob-
tained solutions are compared with ones from numerical method and Homotopy Per-
turbation Method. The excellent agreement of the ADM solutions and the exact solu-
tions shows the reliability and the efficiency of the method. This new method
accelerated the convergence to the solutions. The ADM combined with the Padé ap-
proximant provide efficient alternative tools in solving nonlinear models.

Nomenclature

g – gravitational force
v – velocity component in the y direction
ADM – Adomian Decomposition Method
x – dimensional vertical coordinate
HPM – Homotopy Perturbation Method
y – dimensional horizontal coordinate
NM – numerical method
P – pressure
Pr – Prandtl number
Ρ – density
T – temperature
TW – temperature imposed on the plate
ν – kinematic viscosity
T∞ – local ambient temperature
α – thermal diffusivity
u – velocity component in the x direction
θ – dimensionless temperature
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Analityczne rozwiązanie wymuszonego konwekcyjnie przepływu
w warstwie przyściennej płaskiej płyty

W artykule przedstawiono zastosowanie metody dekompozycji Adomiana do wymuszonego,
konwekcyjnie przepływu ciepła w poziomej, płaskiej płycie. Rozwiązania nieliniowych rów-
nań różniczkowych opisujących zagadnienie poszukiwana w postaci szeregów Adomiana.
Z porównania otrzymanych wyników z wynikami innych metod numerycznych wynika dosko-
nała ich zgodność, która potwierdza skuteczność zastosowanej metody. Otrzymane rozwiąza-
nie pozwoliło jednoznacznie wyznaczyć rozkład i prędkości mian temperatury w analizowanej
płycie.


